Revista Mexicana de Oftalmología

Register      Login

VOLUME 96 , ISSUE 5S ( September-October, 2022 ) > List of Articles

ARTÍCULO ORIGINAL

Densidad vascular macular y peripapilar medida con angiografía por tomografía de coherencia óptica en glaucoma preperimétrico, hipertensos oculares y ojos normales

Patzy Y. Vasquez-Alania, Curt Hartleben-Matkin, Verónica Rodríguez-Carrillo, Crissth P. Gonzales-Alvarez, José F. Noriega-Cerdán, Dannytza Trujillo-Cadillo

Keywords : Angiografía por tomografía de coherencia óptica, Glaucoma preperimétrico, Hipertensión ocular

Citation Information : Vasquez-Alania PY, Hartleben-Matkin C, Rodríguez-Carrillo V, Gonzales-Alvarez CP, Noriega-Cerdán JF, Trujillo-Cadillo D. Densidad vascular macular y peripapilar medida con angiografía por tomografía de coherencia óptica en glaucoma preperimétrico, hipertensos oculares y ojos normales. 2022; 96 (5S):220-226.

DOI: 10.24875/RMO.M22000233

License: CC BY-NC-ND 4.0

Published Online: 28-09-2022

Copyright Statement:  Copyright © 2022 Sociedad Mexicana de Oftalmología. Publicado por Permanyer.


Abstract

Introducción: El objetivo del estudio fue comparar la densidad vascular (DV) peripapilar y macular medidos con la angiografía por tomografía óptica (OCTA) entre pacientes con glaucoma preperimétrico (GP), hipertensión ocular (HTO) y sanos. Material y métodos: Estudio transversal, de cohorte, observacional y prospectivo. Se incluyeron 90 ojos de 90 pacientes divididos en: 30 con GP, 30 con HTO y 30 sanos; durante octubre del 2020 hasta enero 2021. Se usó la OCTA de fuente de barrido (SS-DRI OCT; Triton, Topcon, Japón). Resultados: Encontramos diferencia estadísticamente significativa en la DV macular entre los 3 grupos (ANOVA p < 0.001), pero no en la DV peripapilar (ANOVA p = 0.081). En el análisis por cuadrantes de la DV macular y peripapilar, hallamos diferencias estadísticamente significativas en todos, excepto en el cuadrante temporal (ANOVA p = 0.449) y nasal (ANOVA p = 0.532) respectivamente. Todos los espesores de la capa de bras nerviosas retinales (CFNR), se redujeron significativamente en los cuadrantes temporal (ANOVA, p = 0.001) e inferior (ANOVA p = 0.011). Al correlacionar la CFNR y su correspondiente DV macular y peripapilar, no fue significativa en ninguno de los cuadrantes del grupo GP. Conclusiones: La OCTA es una tecnología prometedora que permite la visualización no invasiva de los vasos capilares peripapilares y retinianos. Existe una diferencia significativa en la densidad vascular promedio y por sectores entre los pacientes con GP, HTO y sanos. Aún no es claro si el daño estructural antecede al daño vascular.


PDF Share
  1. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 2014;121:2081-90.
  2. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311:1901-11.
  3. Flammer J, Mozaffarieh M. What is the present pathogenetic concept of glaucomatous optic neuropathy? Surv Ophthalmol. 2007;52(6 Suppl.): 162-73.
  4. Rechtman E, Harris A, Kumar R, Cantor LB, Ventrapragada S, Desai M, et al. An update on retinal circulation assessment technologies. Curr Eye Res. 2003;27:329-43.
  5. Burgansky-Eliash Z, Bartov E, Barak A, Grinvald A, Gaton D. Blood-flow velocity in glaucoma patients measured with the retinal function imager. Curr Eye Res. 2016;41:965-70.
  6. Triolo G, Rabiolo A, Shemonski ND, Fard A, Di Matteo F, Sacconi R, et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Investig Ophthalmol Vis Sci. 2017;58:5713-22.
  7. Bojikian KD, Chen PP, Wen JC. Optical coherence tomography angiography in glaucoma. Curr Opin Ophthalmol. 2019;30:110-6.
  8. Werner AC, Shen LQ. A Review of OCT angiography in glaucoma. Semin Ophthalmol. 2019;34:279-86.
  9. Verticchio Vercellin AC, Harris A, Tanga L, Siesky B, Quaranta L, Rowe LW, et al. Optic nerve head diurnal vessel density variations in glaucoma and ocular hypertension measured by optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol. 2020;258:1237-51.
  10. Liu L, Jia Y, Takusagawa HL, Pechauer AD, Edmunds B, Lombardi L, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015;133:1045-52.
  11. Venugopal JP, Rao HL, Weinreb RN, Dasari S, Riyazuddin M, Pradhan ZS, et al. Repeatability and comparability of peripapillary vessel density measurements of high-density and non-high-density optical coherence tomography angiography scans in normal and glaucoma eyes. Br J Ophthalmol. 2019;103:949-54.
  12. Venugopal JP, Rao HL, Weinreb RN, Pradhan ZS, Dasari S, Riyazuddin M, et al. Repeatability of vessel density measurements of optical coherence tomography angiography in normal and glaucoma eyes. Br J Ophthalmol. 2018;102:352-7.
  13. Zhao Q, Yang WL, Wang XN, Wang RK, You QS, Chu ZD, et al. Repeatability and reproducibility of quantitative assessment of the retinal microvasculature using optical coherence tomography angiography based on optical microangiography. Biomed Environ Sci. 2018;31:407-12.
  14. Lei J, Durbin MK, Shi Y, Uji A, Balasubramanian S, Baghdasaryan E, et al. Repeatability and reproducibility of superficial macular retinal vessel density measurements using optical coherence tomography angiography en face images. JAMA Ophthalmol. 2017;135:1092-98.
  15. Mansoori T, Sivaswamy J, Gamalapati JS, Balakrishna N. Topography and correlation of radial peripapillary capillary density network with retinal nerve fibre layer thickness. Int Ophthalmol. 2018;38:967-74.
  16. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N, et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Investig Ophthalmol Vis Sci. 2016;57(9):OCT451-9.
  17. Wang X, Jiang C, Ko T, Kong X, Yu X, Min W, S et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2015;253:1557-64.
  18. Cennamo G, Montorio D, Velotti N, Sparnelli F, Reibaldi M, Cennamo G. Optical coherence tomography angiography in pre-perimetric open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 2017;255:1787-93.
  19. Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121:1322-32.
  20. Jia Y, Morrison JC, Tokayer J, Tan O, Lombardi L, Baumann B, et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express. 2012;3:3127-37.
  21. Quigley HA, Enger C. Risk Factors for the development of glaucomatous visual field loss in ocular hypertension. Sci Am. 2007;57:613-58.
  22. Holló G. Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J Glaucoma. 2017;26:e7-10.
  23. Holló G. Vessel density calculated from OCT angiography in 3 peripapillary sectors in normal, ocular hypertensive, and glaucoma eyes. Eur J Ophthalmol. 2015;26:e42-5.
  24. Weinreb RN, Friedman DS, Fechtner RD, Cioffi GA, Coleman AL, Girkin CA, et al. Risk assessment in the management of patients with ocular hypertension. Am J Ophthalmol. 2004;138:458-67.
  25. Bochicchio S, Milani P, Urbini LE, Bulone E, Carmassi L, Fratantonio E, et al. Diurnal stability of peripapillary vessel density and nerve fiber layer thickness on optical coherence tomography angiography in healthy, ocular hypertension and glaucoma eyes. Clin Ophthalmol. 2019;13:1823-32.
  26. Rolle T, Dallorto L, Tavassoli M, Nuzzi R. Diagnostic ability and discriminant values of OCT-angiography parameters in early glaucoma diagnosis. Ophthalmic Res. 2019;61:143-52.
  27. Chao SC, Yang SJ, Chen HC, Sun CC, Liu CH, Lee CY. Early macular angiography among patients with glaucoma, ocular hypertension, and normal subjects. J Ophthalmol. 2019;2019:7419470.
  28. Yip VCH, Wong HT, Yong VKY, Lim BA, Hee OK, Cheng J, et al. Optical coherence tomography angiography of optic disc and macula vessel density in glaucoma and healthy eyes. J Glaucoma. 2019;28:80-7.
  29. Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Weinreb RN. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol. 2005;139:44-55.
  30. Yu PK, Cringle SJ, Yu DY. Correlation between the radial peripapillary capillaries and the retinal nerve fibre layer in the normal human retina. Exp Eye Res. 2014;129:83-92.
  31. Liu L, Edmunds B, Takusagawa HL, Tehrani S, Lombardi LH, Morrison JC, et al. Projection-resolved optical coherence tomography angiography of the peripapillary retina in glaucoma. Am J Ophthalmol. 2019;207:99-109.
  32. WuDunn D, Takusagawa HL, Sit AJ, Rosdahl JA, Radhakrishnan S, Hoguet A, et al. OCT angiography for the diagnosis of glaucoma: a report by the American Academy of Ophthalmology. Ophthalmology. 2021;128:1222-35.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.